Last updated:
0 purchases
complexNumbers 0.0.1
complexNumbers
Use complex numbers in python.
1 Initial Complex
z = Complex(value)
value can be 5 different datatypes:
int
float
complex
str
Complex
1.1 int, float
They are used when a real number should be become a complex number. (no imaginary part)
1.2 complex
Standard complex numbers also can be initialed. (e.g.: 1+1j)
1.3 str
With a string there can be entered complex numbers in the cartesian and polar form.
1.3.1 cartesian form
should be entered like this: "x+yj"
1.3.2 polar form
Modulus and argument are separated by e^. (e.g.: 1e^1)
1.4 Complex
Value can also be the same type as the own class.
2 Variables
The class has following __self__ variables.
real: real part of the cartesian form
imaginary: imaginary part of the cartesian form
modulus: modulus of the polar form
argument: argument of the polar form in the range [0; 2Pi[
3 Methods
The class can be used with the following methods:
__add__ , __radd__ , __iadd__ equals + , +=
__sub__ , __rsub__ , __isub__ equals - , -=
__mul__ , __rmul__ , __imul__ equals * , *=
__truediv__ , __rtruediv__ , __itruediv__ equals / , /=
__pow__ equals ** ATTENTION: only real numbers can be used as power and when used to get a root only one
solution returns.
__eq__ equals ==
__ne__ equals !=
__abs__ equals abs() returns the modulus
__str__ equals str() returns the number in cartesian form (e.g.: "1+1j")
root(n) returns a list with all possible roots of the complex number. n is the power of the root (e.g.: n = 2 ...
square root)
4 Example
>>> a = Complex("1+1j")
>>> b = Complex("1e^1")
>>> print(a.modulus)
1.4142135623730951
>>> print(a.argument)
0.7853981633974483
>>> print(b.real)
0.5403023058681398
>>> print(b.imaginary)
0.8414709848078965
>>> print(a+b)
1.5403023058681398+1.8414709848078965j
>>> print(a-b)
0.45969769413186023+0.1585290151921035j
>>> print(a*b)
-0.30116867893975674+1.3817732906760363j
>>> print(a/b)
1.3817732906760363-0.30116867893975674j
>>> print(a**2)
1.2246467991473535e-16+2.0000000000000004j
>>> print(b**0.5)
0.8775825618903728+0.479425538604203j
>>> print(b.root())
[0.8775825618903728+0.479425538604203j, -0.8775825618903728-0.4794255386042029j]
>>> print(abs(b)
1.0
>>> print(a == a)
True
>>> print(a != b)
True
For personal and professional use. You cannot resell or redistribute these repositories in their original state.
There are no reviews.